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Abstract 

A special  class of  quantum  recurrent  nets  simulating  Markov  chains 
with absorbing states is introduced. The absorbing states  are  exploited  for 
pattern  recognition:  each  class of patterns is attracted  to a unique absorbing 
state. Due to quantum  interference of patterns, each combination of patterns 
acquires its own  meaning:  it  is  attracted  to a certain  combination of 
absorbing states which is different from those  of  individual attractions. 
'This fundamentally  new  effect  can be interpreted  as  formation  of a 
grammar, i.e., a set  of  rules assigning certain  meaning  to  different 
combinations  of patterns. It  appears  that  there exists a class of  unitary 
operators in  which  each  member  gives  rise to a different  artificial  language 
with associated rrrammar. 

One  of  the oldest and  most  challenging  problems  is to understand  the process of 
language formation. In  this note, based  upon  recent successes in quantum  information 
theory ['I  , and in particular, upon a concept  of  quantum  recurrent  nets (QRN) 12] , a new 
phenomenological  formalism  for  pattern  recognition  and  grammar  formation is proposed. 

A quantum  recurrent  network consists of a conventional  quantum network 
augmented  with a classical measurement  and  quantum  reset  operation. The design of a one 
dimensional quantum recurrent  network  is  shown in Fig. 1. 

An initial state, Iw), is  fed  into  the network, transformed  under  the  action  of a 

unitary operator, U, subjected  to a measurement,  indicated by  the measurement operator 

M (  }, and the  result of the  measurement  is  used to control the  new  state  fed  back into  the 

network  at  the  next  iteration.  One  is  free  to  record,  duplicate or even  monitor  the  sequence 
of measurement outcomes, as  they  are  all  merely  bits  and  hence  constitute  classical 
information. Moreover, one  is free to choose the  function  used during the  reset phase, 
including the possibility of adding no offset  state whatsoever. Such flexibility  makes  the 
QRN architecture  remarkably  versatile. To simulate a Markov process, it is sufficient to 
return just the  last  output  state  to  the  next  input  at  each  iteration. 

For a proof-of-concept, we  will  start  with  the  following unitary N-dimensional 
0 

operator U 
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, I  

U =  

which  maps  the ith eigenvector  into a jth eigenvector: 

{ : I {  T I  
00 ... 010 ... 0 + 0...0010...0 

with  the  probability 

2 
pi' = luj;l 

Eq. (3) is modified to the  following [*I 

if each  result of the  measurement  is  combined  with  an  arbitrary  offset  vector 

For  the  purpose of pattern  recognition,  the offset vector  will be chosen  as follows: 
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where i is defined by Eq. (2). 
0 

Now the probability  of  the  mapping (2) performed by  the unitary  operator U and 
the offset vector (6)  can  be  obtained by combining Eqs. ( 3 )  and (4), and  the  transition 
matrix  for  the  corresponding  Markov  chain  is: 

e =  

This chain 

O I ? J < l  
N 

has n transient  states Tp(p = 1,2.. .n) and Nl - rz absorbing states 

%(y = n + 1, n + 2,. . . N ) ,  and  therefore,  regardless  of an initial state, the  stochastic process 

eventually  will  be  trapped in  one of the  absorbing  states Ak . However, the  probability  that 

it  will be a prescribed state. A,, depends  upon  the  initial state. Indeed, as follows from 

theory  of  Markov chains, the  probability f:  of absorption  into Ak from T,, satisfies the 

system  of equations: 

0 
Consequently, by appropriate  choice  of U and II,v~)  in Eqs. ( I ) ,  and (6), one can divide all 

the  initial states  into Nl -n  groups such  that  each  state  of  the group is absorbed (with a 
sufficiently  high  probability)  into the  same  prescribed state. Such a performance  can be 
interpreted as pattern  classification  if  each  eigenvector  introduced  to  the QRN is  associated 
with  the corresponding patterns. 
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We will not go into  mathematical details  here in order t o  focus  attention  upon 
formation of an artificial  language  instead.  For that purpose, suppose that each run of  the 

quantum device  is  repeated t? times  while J! S n independent  measurements are collected 
and fed back  into QRN. Then, instead of mapping (2), one  arrives at the following: 

, m l e .  (9) 
t 

I , , ,  

This  corresponds to evolution of k different  patterns  introduced to QRN simultaneously. 

One  can  generalize Eq. (4) to  the  following: 

by considering  how each of  the recurrent  states  combined  with  the  offset  vector (5) evolves 

under  the  action  of U . 
0 

Eq. (10) defines the  probability of transition  from  the  set of inputs il . . . i, to the  set 

of outputs j ,  . . . i,, 

If m = k', and the  offset  vector is expressed by Eq. (6), the transition  probability 

matrix 6, can  be  presented  in  the  form  similar to 4 in Eq. (7): 

This  means  that  the  corresponding [-variate stochastic  process  has n' transient states 

T,,(p = 1,2,. . . n ' )  and N'  - n' absorbing  states A,, and therefore, t? combinations of e 
different  patterns (in the  form  of  normalized  sums  of e different  eigenstates) are mapped 
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onto N,. 5 I? different classes. Hence,  the  total  number of pattern  combinations  which 

can be classified by the QRN is: 
(” 1 

Now  the performance of  the QRN can  be  given  the following  interpretation. As soon as 

the unitary matrix U and the offset  vector 1 ~ ’ )  are  chosen (see Eqs. (1)  and (6), all  the 

transition  matrices P,(k = 1,2,. . .!) are  uniquely defined (see Eqs. (4),(7),( 10)  and (1 1). It 

should be  noticed  that  these  matrices do not  have  to  be  implemented:  they exist in an 

abstract  mathematical  space  being  induced by f i  and 1 ~ : ) .  If  the only  one  measurement is 

fed  back (C = l), then  the  transition  matrix (7) manipulates by basic  patterns-eigenstates 

which  can  be  identified  with  “letters”  of  an  alphabet:  by  mapping  each  eigenvector  into a 
corresponding class, it assigns a certain  meaning  to  the  letter.  If e independent 

measurements  are  fed  back (1 < ! 2 n),  then  the  transition  matrix (1 1) assigns certain 

meanings  to  combinations  of letters, i.e., to e-letter “words.” In order to understand the 
rules of these assignments, i.e., the “grammar”, let us turn  to Eq. (10). As follows from 
there,  in general: 

i.e., an  [-variate  stochastic process is not  simply  the  product  of e underlying one- 
dimensional  stochastic  processes,  and  the  difference 

expresses the amount of “novelty”, or  new  information  created  by  interaction  between 
different  patterns  via  quantum  interference.  Formally Eqs. (14) resemble  quantum 
entanglement  which  is also responsible for creation  of a new information; however, 
actually  this  entanglement  is  not  quantum: it is a correlation  between  several  classical 
stochastic  processes  generated by quantum  interference. 

It should be recalled  that  classical  neural  nets  where  patterns  are  stored  at  dynamical 
attractors, do not  have a grammar:  any  combination  of  patterns is meaningless unless their 
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storagc is spccially arrangcd. and that would  require  actual  itnplcmentation o f  an 
cxponcntial  number of  new attractors (see Eq. ( 12)). 

0 

Thus, each  unitary  operator U having  the  structure ( 1 )  and  supplied with an offset 

vector I vi) of  the  type (6) generates a new grammar. Since the structure ( I )  is preserved 

under  matrix  products, new operators 

as well as their  linear  combinations  represent new grammar. In particular, if the  time 
period  of each run  of  the  QRN is increased  in q times,  then  the  effective  unitary operator 
will  be  different  from  the  original  one: 

u = u  0 ’  0 4  

and  thereby a set  of  new  languages  can  be  generated  by  the  same  quantum  “hardware”. 

The  second  equation  in  (15)  opens up a possibility  to  build a high-dimentional operator U 
from low-dimensional components of  the  same  structure. 

It  is  worth  mentioning  that  not  every  language  of  the  possible  set of languages is 
useful. Indeed, the  performance of the QRN, and in  particular,  the assignments of pattern 
combinations to  specific  absorbing  states  is  probabilistic.  It  is  reasonable to require that for 
each  selected  patterns  combination,  the  corresponding  absorbing  probability distribution 
over  all possible states has a well  pronounced  preference for a certain  state; otherwise a 
word  would  lose its stable  meaning. (It should  be  noticed  that  small overlapping of 
absorbing states is acceptable:  it  makes  the  language  more  colorful by incorporating 
double-meaning to  some words). As mentioned earlier, stability of  the meaning of  the 

basic patterns, i.e., letters, can  be  achieved  by  an  appropriate  choice of U and I v / : )  based 

upon solutions of Eqs. (8). However, as soon as f i  and I v / : )  are fixed, there  is  no further 

control over stability of words’  meaning  since  all  the  transition  matrices e are  already 

predetermined (see Eqs. (IO) and (1  1)). In  this situation, one  can characterize the 

effectiveness of  the language by the  ratio < of  the  number W of useful  words to the  total 

number  of  words S: 
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W 
S 

< = -, s - O(2")  

Hence, to maximize < one  has to identify  such a solution to Eqs. (8) which 

simultaneously stabilizes the  meanings of all  the  letters  as  well as most of  the words. 
Obviously, in general, this  problem  is  hard. 

In order to demonstrate  the  existence  of  effective  emerging  grammars, consider the 
following  example: 

Suppose that in Eqs. (1) and (6):  

where q, a3 and a4 are real. 

Then, applying Eq. (4) one finds  the elements of the  transition  matrix 4 (see Eq. 
(7)): 

4' = p2' = yIcos2q,  e2 = 4' = y,Sin 2 q, 4 = = y l a 3 ,  4 = = y p 4  3 3  2 4 4  2 

As fOl~OwS from Eqs. (19), there are two transient states (Ti and T2), and two absorbing 
states (A, and A4). 

Introducing 4 input  patterns: 

Iw,) = (1000), Iw2) = {0100}, lw,) = {0010}, Iw,) = (0001) (20) 

as  well  as  their  images in the probabilistic space: 
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n, = {lOOO], x2 = {0100}, etc., n, = I / / ) ,  

first one  can  write  down  trivial  mapping: 

Other  transitions: 

are  more complex, and they can be  found from Eqs. (8): 

= l q ‘ f ; 3  + IyL3 + c3, f2’ = 4’f;3 + 4*h3 + 8’ 

whence 

Similarly  one  finds: 

A ,  = A’. h4 = h3 

Thus, if 

u3 z a,, 

the  patterns I t y , )  and Iy,) do not  have  any  meaning;  with  the  same  probability  they  can 

be absorbed by  the states A, or A, . However, if 

the same  patterns are absorbed by  only  one  state A, or A, and that assigns certain meaning 
to each of them. 
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but their  image in the  probabilistic  space  will be different  from (20): 

Instead of listing all the 64 elements of the  matrix P, (see Eqs. (10) and (1 l), we will 
concentrate upon those which  will  be  used  in our analysis.  first of all, 

0 if a # i, p # i, i = 3,4 0 if a # i , p z j  
1 otherwise, r/ 1 otherwise 

q,ap = p? = 

This means that there are 4 absorbing states : A,,, A,,, A,, and A,, ; the rest 12 states (T,*, 
TI39 etc) are transient.  Here we  will  be  interested  only  in  the  evolution of the pattern’s 

combination lv,,) (see Eq. (29)) since  it is the  only  one  which  entangles  the patterns 

i w , )  and I v,) (see Eqs. (20)). (Other combinations: ~ w , , ) , I w ~ , ) ,  etc. are not entangled, 

and  therefore,  their  evolution  can  be  predicted  from  the  previous  analysis  as direct products 

IW,) 0 I w , ) , l ~ , )  0 Iy,), i.e., it does  not have any  novelty element). 

Thus. one obtains: 

where 
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As follows  from  the  last  four  equations in (32), there  are  direct  transitions  from  the  pattern 

combination l t y , , )  to  the  absorbing states. However, in addition  to that, there exist many 

indirect  transitions to the  same states, for instance, q2 + q3 + q3, q2 -+ q4 + T-, etc. 

and  these  transitions  include  the  entanglement  effect  which  has  maxima  at q = -t 1 / 4 . 
As a result, the pattern  combination I t y 1 2 )  acquires a new  meaning  since it cannot be 

reduced  to the direct product of  the  patterns 1 y , )  and [ y , )  . 
The performance of  this  simple  QRN  becomes  more  sophisticated 

U and a in Eq. (18) are complex numbers. 

Utilizing  the  properties (15), one  can  represent a unitary  operator 
the  form: 

6 = (uy 0.. .ut)) . (u; 0 . . . u:;'). . . (uy  0 . . .up) 

if the elements of 

f J  in Eq. (1) in 

(34) 

gaining exponential dimensionality of U with  linear  resources. 

Thus, it has been  demonstrated  that  QRN  is  capable of creating emerging grammars 
by assigning different  meanings  to  different  combinations of letters. The paradigm  is  based 
upon quantum interference of patterns  which  entangles  the  corresponding  Markov 
processes, and thereby, creates a new  meaning  depending  upon  how different patterns 
interact. The capacity  of  the  language, i.e., the  total  number of words  in  it  is exponential in 
n where n is  dimensionality of  the  basic  unitary operator. However,  if this operator is 
presented as a direct  product,  then  the  number of words  can  be  made double-exponential in 
the  dimensionality of the  quantum  hardware. 

The problems  of  hardware  implementations  of QRN have  not  been discussed in  this 
note.  However, since QRN operates by interleaving  quantum  evolution  with  measurement 
and  reset operations, they  are far less  sensitive  to  decoherence than other designs of 
quantum computers. 
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Fig. 1. A one-dimensional quantum recurrent  network 


